1, 中垂线的性质,定义和判定
垂直平分线,简称“中垂线”,是初中几何学科中占有绝大部分的非常重要的一部分。垂直平分线的定义:经过某一条线段的中点,并且垂直于这条中线的直线,叫做这条线段的垂直平分线(中垂线)。垂直平分线的性质:1.垂直平分线垂直且平分其所在线段。2.垂直平分线上任意一点,到线段两端点的距离相等。3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。垂直平分线的判定:必须同时满足(1)直线过线段AB中点C,(2)直线CD⊥线段AB
2, 线面平行中判定定理与性质定理怎么用
1、线面平行的判定定理:如果平面外一条直线平行于平面内一条直线,则平面外的这条直线就平行于该平面;2、线面平行的性质定理:如果一个平面内的两条相交直线都平行于已知平面,则这两个平面平行;3、用处:线面平行的判定定理主要是通过线线平行来证明线面平行的;线面平行的性质定理是通过线面平行来证明面面平行的;4、对定理的理解:线面平行的判定定理,顾名思义是如何来判断线与面是平行的,即通过什么条件(线线平行)可以得到线与面是平行的;线面平行的性质定理,即通过线与面平行,能够推导出什么结论(面面平行)。
名词解释
线段
线段(segment)是指两端都有端点,不可延伸,有别于直线、射线。
中垂线
中垂线即垂直平分线。