1, 无功补偿器的工作原理是什么
在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗。无功补偿为一种在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境的技术。无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少电网的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。无功补偿的相关要求规定:1、将晶闸管与继电器接点并联使用,但是复合开关既使用晶闸管又使用继电器,于是结构就变得比较复杂,成本也比较高,并且由于晶闸管对过流、过压及对dv/dt的敏感性也比较容易损坏。2、当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过补偿状态,这时电网的电流超前于电压的一个角度,功率因数超前或滞后是指电流与电压的相位关系。参考资料来源:百度百科-无功补偿
2, svg无功补偿器工作原理图?
SVG的基本原理是利用可关断大功率电力电子器件(如IGBT)组成自换相桥式电路,经过电抗器并联在电网上,适当地调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流,就可以使该电路吸收或者发出满足要求的无功电流,实现动态无功补偿的目的。 图3:1为SVG的三种运行模式:SVG并联于电网中,相当于一个可变的无功电流源,其无功电流可以快速地跟随负荷无功电流的变化而变化,自动补偿系统所需无功功率。由于SVG的响应速度极快,所以又称为静止同步补偿器(Static Synchronous Compensator, 简称STATCOM)。一种可靠性更高、基本无谐波污染、体积更小、对环境适应能力更强的动态无功补偿装置SVG将在电力系统动态无功补偿,动态调压,变电站可调低抗、高抗,冶金、电气化铁路等场所的动态无功补偿等领域发挥积极的作用。图3.2给出了SVG的示意图。(星接)图3.2 SVG设备示意图(星接)功率单元采用IGBT进行整流,中间采用电容滤波和储能,输出侧为4只IGBT组成的H桥,电路结构如下图3.3所示。图3.3功率单元电路结构在任意时刻,每个单元仅有三种可能的输出电压,如果G2和G3导通,从A到B的输出电压将为+U,如果G1和G4导通,从A到B的输出电压将为-U,如果G1和G3或者G2和G4导通,则从A到B的输出电压为0V。通过控制G1、G2、G3、G4 四只IGBT的导通和关断状态,在A、B输出端子可以得到U的等幅PWM波形。改变PWM波形中正电压和负电压的占空比,就改变了功率单元输出电压中交流基波的大小。G5为泄放IGBT,当单元母线电压超过一定幅值时,G5开通,降低母线电压,使单元母线电压正常,使设备能正常运行上图说明了如何通过改变G1、G2、G3、G4四只IGBT的触发脉冲,实现功率单元变压变频输出的基本原理。功率单元PWM输出波形为下图3.4所示。图3.4为功率单元PWM输出在实际系统中,控制器根据当前需要的输出电压和频率,用处理器产生G1、G2、G3、G4的触发脉冲,通过光纤传递给功率单元。因为功率单元逆变桥同桥臂上下管不能直通,需要考虑适当互锁时间,从而在每个功率单元的输出端得到大小和频率满足需要的交流基波电压输出。SVG输出侧由每个单元的A、B输出端子相互串接而成,按照星型接法往电网输出相应电压,中性点悬浮。虽然每个功率单元输出的都是等幅PWM电压波形,但相互间有确定的相位偏移,通过串联叠加,可得到正弦阶梯状PWM波形。图3.5各单元输出电压及叠加后的相电压波形(4级)图3.6单元输出电压及叠加后的相电压波形(7级)从以上波形图看出,SVG提供的输出电压正弦度很好。每个功率单元的开关频率可以较小(以减小器件损耗和发热),但SVG输出电压等效的开关频率却很高,仅含少量的极高次谐波,有确定的相位偏移,通过串联叠加,可得到正弦阶梯状PWM波形。SVG采用这种单元串联的结构,使SVG设备可以实现单元旁路功能(该功能为选件),当某一个单元出现故障时,通过使功率单元输出端子并联的继电器闭合,将此单元旁路出系统而不影响其他单元的运行。
名词解释
COS
余弦(余弦函数),三角函数的一种。 在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
供电
供电,是物理学上一个基本概念,就是按照诸如频率、电压、连续性、最大需量、供电点及费率等技术标准和商业规则,向消费者提供电力的服务的意思。