1, 球体是什么意思的呢?
圆柱体的体积公式:体积=底面积*高 ,如果用h代表圆柱体的高,则圆柱=S底*h 长方体的体积公式:体积=长*宽*高 如果用a、b、c分别表示长方体的长、宽、高则 长方体体积公式为:V长=abc 正方体的体积公式:体积=棱长*棱长*棱长. 如果用a表示正方体的棱长,则 正方体的体积公式为V正=a·a·a=a³ 锥体的体积=底面面积*高÷3 V 圆锥=S底*h÷3 台体体积公式:V=[ S上+√(S上S下)+S下]h÷3 圆台体积公式:V=(R²+Rr+r²)hπ÷3 球缺体积公式=πh²(3R-h)÷3 球体积公式:V=4πR³/3 棱柱体积公式:V=S底面*h=S直截面*l (l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h 注:V:体积;S1:上表面积;S2:下表面积;h:高。 ------ 几何体的表面积计算公式 圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr*(a/360) S=πr2*(a/360) 弓形 l-弧长 S=r2/2·(πα/180-sinα) b-弦长 =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高 =παr2/360 - b/2·[r2-(b/2)2]1/2 r-半径 =r(l-b)/2 + bh/2 α-圆心角的度数 ≈2bh/3 圆环 R-外圆半径 S=π(R2-r2) r-内圆半径 =π(D2-d2)/4 D-外圆直径 d-内圆直径 椭圆 D-长轴 S=πDd/4 d-短轴
2, 什么的球体
没有区别。球是球体的简称。一个半圆绕直径所在直线旋转一周所成的空间几何体叫做球体,简称球。球体是一个连续曲面的立体图形,由球面围成的几何体称为球体。世界上没有绝对的球体。绝对的球体只存在于理论中。但在失重环境(如太空)中,液滴自动形成绝对球体。球的表面是一个曲面,这个曲面就叫做球面。球和圆类似,也有一个中心叫做球心。扩展资料:球体性质用一个平面去截一个球,截面是圆面。球的截面有以下性质:1 球心和截面圆心的连线垂直于截面。2 球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。球体函数半径为r的球的方程为:
名词解释
球体
球体(globe)是一个连续曲面的立体图形,是一个半圆绕直径所在直线旋转一周所成的空间几何体,简称球。 半圆的半径即是球的半径。球体是有且只有一个连续曲面的立体图形,这个连续曲面叫球面。 球体在任意一个平面上的正投影都是等大的圆,且投影圆直径等于球体直径。
截面
在原子核物理学和粒子物理学中,截面是一个用于表达粒子间发生相互作用可能性的术语。
球心
球心是与球面各点距离相等的一点。半圆以它的直径所在的直线为旋转轴,旋转一周所成的曲面叫做球面,球面所围成的几何体叫做球体,简称球,半圆的圆心叫做球心。连结球心和球面上任意一点的线段叫做球的半径,连结球面上两点并且经过球心的线段叫做球的直径。