1, 多旋翼和固定翼无人机各自有哪些优缺点
在操控性方面,多旋翼的操控是最简单的。它不需要跑道便可以垂直起降,起飞后可在空中悬停。它的操控原理简单,操控器四个遥感操作对应飞行器的前后、左右、上下和偏航方向的运动。在自动驾驶仪方面,多旋翼自驾仪控制方法简单,控制器参数调节也很简单。相对而言,学习固定翼和直升机的飞行不是简单的事情。固定翼飞行场地要求开阔,而直升机飞行过程中会产生通道间耦合,自驾仪控制器设计困难,控制器调节也很困难。在可靠性方面,多旋翼也是表现最出色的。若仅考虑机械的可靠性,多旋翼没有活动部件,它的可靠性基本上取决于无刷电机的可靠性,因此可靠性较高。相比较而言,固定翼和直升机有活动的机械连接部件,飞行过程中会产生磨损,导致可靠性下降。而且多旋翼能够悬停,飞行范围受控,相对固定翼更安全。在勤务性方面,多旋翼的勤务性是最高的。因其结构简单,若电机、电子调速器、电池、桨和机架损坏,很容易替换。而固定翼和直升机零件比较多,安装也需要技巧,相对比较麻烦。在续航性能方面,多旋翼的表现明显弱于其他两款,其能量转换效率低下。在承载性能方面,多旋翼也是三者中最差的。对于这三种机型,操控性与飞机结构和飞行原理相关,是很难改变的。在可靠性和勤务性方面,多旋翼始终具备优势。随着电池能量密度的不断提升、材料的轻型化和机载设备的不断小型化,多旋翼的优势将进一步凸显。因此,在大众市场,“刚性”体验最终让人们选择了多旋翼。然而,多旋翼也有自身的发展瓶颈。它的运动和简单结构都依赖于螺旋桨及时的速度改变,以调整力和力矩,该方式不宜推广到更大尺寸的多旋翼。第一,桨叶尺寸越大,越难迅速改变其速度。正是因为如此,直升机主要是靠改变桨距而不是速度来改变升力。第二,在大载重下,桨的刚性需要进一步提高。螺旋桨的上下振动会导致刚性大的桨很容易折断,这与我们平时来回折铁丝便可将铁丝折断同理。因此,桨叶的柔性是很重要的,它可以减少桨叶来回旋转对桨叶根部的影响。正因为如此,为了减少桨叶的疲劳,直升机采用了一个容许桨叶在旋转过程中上下运动的铰链。如果要提供大载重,多旋翼也需要增加活动部件或加入涵道和整流片。这相当于一个多旋翼含有多个直升机结构。这样多旋翼的可靠性和维护性就会急剧下降,优势也就不那么明显了。当然,另一种增加多旋翼载重能力的可行方案便是增加桨叶数量,增至18个或32个桨。但该方式会极大地降低可靠性、维护性和续航性。(劲鹰无人机)
2, 多旋翼无人机和固定翼无人机相比有什么优点?
这个是分情况的,要从不同的角度来分析首先从性能和操控上来说在操控性方面,多旋翼的操控是最简单的。它不需要跑道便可以垂直起降,起飞后可在空中悬停。它的操控原理简单,操控器四个遥感操作对应飞行器的前后、左右、上下和偏航方向的运动。在自动驾驶仪方面,多旋翼自驾仪控制方法简单,控制器参数调节也很简单。相对而言,学习固定翼和直升机的飞行不是简单的事情。固定翼飞行场地要求开阔,而直升机飞行过程中会产生通道间耦合,自驾仪控制器设计困难,控制器调节也很困难。在可靠性方面,多旋翼也是表现最出色的。若仅考虑机械的可靠性,多旋翼没有活动部件,它的可靠性基本上取决于无刷电机的可靠性,因此可靠性较高。相比较而言,固定翼和直升机有活动的机械连接部件,飞行过程中会产生磨损,导致可靠性下降。而且多旋翼能够悬停,飞行范围受控,相对固定翼更安全。在勤务性方面,多旋翼的勤务性是最高的。因其结构简单,若电机、电子调速器、电池、桨和机架损坏,很容易替换。而固定翼和直升机零件比较多,安装也需要技巧,相对比较麻烦。在续航性能方面,多旋翼的表现明显弱于其他两款,其能量转换效率低下。在承载性能方面,多旋翼也是三者中最差的。对于这三种机型,操控性与飞机结构和飞行原理相关,是很难改变的。在可靠性和勤务性方面,多旋翼始终具备优势。随着电池能量密度的不断提升、材料的轻型化和机载设备的不断小型化,多旋翼的优势将进一步凸显。因此,在大众市场,“刚性”体验最终让人们选择了多旋翼。再从市场需求方面来说比如军用无人机,几乎没有多旋翼什么事;多旋翼在民用上应用多一些,第一,多旋翼相对便宜一些,第二,由于有飞控控制,使得操作变得非常简单,飞行很稳定,如果配上好的飞控,可以使多旋翼变得非常强大,甚至没玩过航模的人都能得心应手,特别是在航拍领域,多旋翼异军突起,在很多电视节目也有应用;第三,国产的多旋翼发展很快,例如DJI,中云图无人机都还不错。 望采纳,谢谢@!
3, 固定翼飞机和直升飞机都各有哪些优势,都各有哪些缺点?
1.什么是多旋翼多旋翼飞行器是一类通过多个定距桨(螺旋桨)正反旋转与转速控制提供飞行器升力与飞行器姿态调整。这样的定义方式使我们准确了解多旋翼飞行器的旋翼结构、升力来源、姿态控制方式。2.多旋翼飞行器一般结构任何飞行器都可以分为三个部分:控制器,执行器,反馈环节。控制器包括飞控,接收机;执行器包括电调,直流电机,定距正反桨;反馈环节就是传感系统,一般包括两大类:飞行器姿态传感系统,外部环境感知系统。3.多旋翼飞行器控制原理四旋翼飞行器正反桨两两成对,分别向不同方向旋转,平衡扭矩并向旋翼“下方”推送气流。通过成对变化定距桨旋转速度,调整入流量来实现飞行器姿态控制。一般而言,四旋翼飞行器有两种飞行模式,上面介绍的是X型控制结构,也是当下使用较多的控制方式。除此之外还有十字型,两者原理大同,细节小异。至于八旋翼,十六旋翼甚至更多,都是通过成对正反桨平衡扭矩,提供升力,调整姿态。4.多旋翼飞行器特点多旋翼机型确实降低了商品无人机的门槛。然而在很多飞行器设计师的眼中多旋翼飞行器是一个非常“奇怪”的存在,它的缺点实在非常多,却因同样具有非常鲜明的优点而成为当下无人机市场的宠儿。优点从飞行器操作者的角度来看,多旋翼是完美(简单)的被控对象(虽然它还是非线性,非最小相位系统)。多旋翼飞行器可以很容易产生统一方向的气流推送,因此具备优秀的VOTL能力与定点悬停能力,而这是一般固定翼飞机望尘莫及的。同时对称的旋翼布局使得其操控简单直接,姿态调整时只需成对改变旋翼转速,就可提供非常“直接”的姿态力矩。而其它旋翼机则一般会有一个复杂的动力学过渡过程(这样描述其实很不专业,却比较容易理解),增加了炸鸡以及飞行器周围人员的风险,对操作者的控制要求提升了很多。而且多旋翼飞行器的姿态变化方式使得该机型直接采用定距桨,相比于直升机的变距桨在机械设计结构,控制难度,实现成本,姿态平稳方面都有很大提升。一句话:多旋翼飞行器使得飞行变得简单缺点从飞行器设计者的角度来看多旋翼飞行器却是—“无比丑陋”的。首先,其气动效率非常糟糕。固定翼是上帝为飞行生物设计的完美的飞行器结构。固定翼在空中可以借助气流产生升力,姿态变换通过“借力”实现(还是要有执行器控制相应的机械结构,但省“力”很多),螺旋桨或者喷气发动机只提供额外飞行速度。而多旋翼需要安装与旋翼数相同的电机来提供升力,在飞行过程中完全没有办法借助空气动力。姿态变化,飞行速度全部来自于机载动力,自身能量消耗巨大,效率之低令人发指。这也是为什么在讨论翼型时基本都是关于固定翼和直升机的,多旋翼的定距桨也就是谈一谈扭矩,旋翼尺寸和电机选择方面的匹配罢了。其次,在机动性方面,直升机型飞行器机动速度与飞行包络都明显优于多旋翼飞行器,如果在机动过程中充分考虑直升机机身与主旋翼之间的作用力耦合,并在控制算法中巧妙地加以利用则可以增强直升机的机动性,降低能耗。但对于多旋翼而言,机动过程既不美观也不经济。最后,当多旋翼飞行器“大型化”也就是Scale number(尺寸系数)上升后,意味着需要提供更大的升力从而要求更大尺寸的定距桨,这不但面临着更大动力模块的难题,同时众多大尺寸旋翼在一个平面中旋转会使实际控制变更加困难。一句话:多旋翼飞行器使得飞行变得没品质。任何一种飞行器结构都必然存在自己优缺点,换句话说,留给爱好者和设计者的空间是很大的,无人机在飞行器控制方式和结构设计中蕴藏着巨大的创新潜力。相信以后可以看到越来越多奇妙、美丽、高效的飞行器设计结构。(劲鹰无人机)
名词解释
旋翼
该词条首先对旋翼概念进行了介绍,并分别对四种具体的旋翼铰接式旋翼、无铰式(固接式)旋翼、半无铰式(半固接式)旋翼、无轴承式旋翼进行了分析和比较。
可靠性
可靠性的定义是产品在规定的条件下和规定的时间内,完成规定功能的能力。“三个规定”是理解可靠性概念的核心。